Objective: Learn to use one and more than one equations of motion to solve the problems

1.	A car covers first half of the distance between two places at a speed of 40 kmph and the second half at a speed of 60 kmph. The average speed of the car is					
	a) 100 kmph	b) 48 kmph	c) 50 kmph	d) 25 kmph		
2.	Displacement of a body, as a function of time (t) , in seconds, is given by					
	$x = 3 + 2t + \frac{1}{2}t^2$ in metres. Its acceleration is a) 0.25 ms ⁻² b) 0.5 ms ⁻² c) 0.75 ms ⁻² d) 1 ms ⁻²					
	a) 0.25 ms ⁻²	b) 0.5 ms ⁻²	c) 0.75 ms ⁻²	d) 1 ms ⁻²		
3.	A bus, starting from rest, accelerates uniformly and acquires a speed of 36 kmph i 10s. Acceleration of the bus is a) 1 ms^{-2} b) 2 ms^{-2} c) $\frac{1}{2} \text{ ms}^{-2}$ d) 3 ms^{-2}					
	a) 1 ms ⁻²	b) 2 ms ⁻²	c) ½ ms ⁻²	d) 3 ms ⁻²		
4.	Relation between velocity v and position x of a particle with moving with uniform					
	acceleration in a straight, line is given by $v = \sqrt{196 - 16x}$ (in SI units). Its acceleration is					
		b) -8 ms ⁻²	c) 14 ms ⁻²	d) -16 ms ⁻²		
5.	Displacement of a freely falling body in 6 th second is 53.9m. Its displacement is second will be					
	a) 53.9 m	b) 63.7 m	c) 73.5 m	d) 83.3 m		
6.	A car accelerates from rest with a uniform rate of 2 ms ⁻² for some time. Brakes are then applied to bring it to rest with a deceleration of 4 ms ⁻² . If the total time of travel is 15s, its maximum velocity is					
	a) 72 kmph	b) 56 kmph	c) 60 kmph	d) 50 kmph		
7.	A car, starting from rest, accelerates at a rate of 5 ms ⁻² and reaches a maximum velocity 20ms ⁻¹ . Then by the application of breaks it comes to rest with a deceleration of 8 ms ⁻² . The total time of journey is					
	a) 2.50 s	b) 4.82 s	c) 6.25 s	d) 6.50 s		
8.	The speed (ν) of a body moving with uniform acceleration is tripled in covering a distance (S). When it covers additional distance S its speed would become					
	a) 9 <i>v</i>	b) 16 <i>v</i>	c) $\sqrt{7v}$	d) $\sqrt{17v}$		
9.	Distance travelled ba) 2.5 ms ⁻²		$S = (20 t + 5 t^2) \text{ m. Acc}$ c) 10 ms^{-2}	celeration of the body is d) 0.5 ms ⁻²		
10.	A body travels 200 cm in the first two seconds and 220 cm in the next 4 seconds motion. Velocity of the body at the end of the 7 th second is					
	a) 5 cm s ⁻¹	b) 10 cm s ⁻¹	c) 15 cm s ⁻¹	d) 20 cm s ⁻¹		

	a) zero	b) 12 m	c) 6 m	d) 18 m		
12.	An object projected up vertically with a velocity of 98 ms $^{-1}$ reaches a point X in it after 4 seconds. From the instant of projection, it crosses X again after					
	a) 4 s	b) 8 s	c) 12 s	d) 16 s		
13.	A juggler throws clubs into air. He throws one, whenever the previous one reaches to its highest point. The height to which the clubs rise if he throws n clubs per second is					
	a) $\frac{g}{2n^2}$	b) $\frac{g}{n}$	c) $\frac{g}{2n}$	d) $\frac{n^2}{g}$		
14.	A stone is thrown vertically upward with an initial velocity u from the top of a tower, reaches the ground with a velocity $3u$. The height of the tower is					
	a) $3u^2/g$		c) $6 u^2 / g$			
15.	A body is thrown upwards with velocity 100 ms ⁻¹ and it travels 5 m in the last second of its upward journey. If the same body is thrown upward with velocity 200 ms ⁻¹ , the distance it will travel in the last second of upward journey is					
	a) 5 m	b) 10 m	c) 20 m	d) 25 m		
16.	Average velocity of a) 5 m	freely falling body b) 10 m	is 7 ms ⁻¹ . It is released fro c) 20 m	om a height equal to d) None		
17.	A freely falling body crosses points A and B with velocities v and $2v$ respectively. The velocity of that body at C such that AB = BC will be					
	a) $\sqrt{3} v$	b) √4 <i>v</i>	c) √5 <i>v</i>	d) $\sqrt{7} v$		
18.	A body is allowed t	A body is allowed to fall freely from a height $\it h$. The time taken by the body to cove				
	the first half of the	est half of the height is t_1 and other half is t_2 . Then $\dfrac{t_1}{t_2}$ is				
	a) 1:1	b) 2:1	c) $(\sqrt{2}+1):1$	d) $(\sqrt{2}-1):1$		
19.	A multi storied building has 30 floors of same height. A stone falling from the top is found to cover one storey in the first second. The number of storeys covered by the stone during the third second will be					
	a) 3	b) 4	c) 5	d) 6		
20.	From a building two balls A and B are thrown such that A is thrown upwards and B downwards (both vertically). If v_A and v_B are their respective velocities on reaching					
	the ground, then					
	a) $v_B > v_A$		$b) v_A = v_B$			
	c) $v_A > v_B$	d) their velocities depend on their masses				

11. Displacement (x) from the origin, of a particle moving in one dimension with constant

acceleration is related to time t by the equation $t = \sqrt{x} + 3$, where x is in metres and t is in seconds. Displacement of the particle at an instant when its velocity is zero will be

21.	A ball is released from the top of a tower of height h . it takes t seconds to reach the ground. At an instant of time $t/2$, the ball will be a) at $h/2$ meters from the ground b) at $h/4$ meters from the ground c) at $h/4$ meters from the ground d) at 3 $h/4$ meters from the ground						
22.	Displacement of a page 22 m	particle is given by $x =$ b) 10 m	2+2 <i>t</i> +5 <i>t</i> ² m. Its displac c) 26 m	ement after 2s will be d) 18 m			
23.	seconds will be (g	= 9.8 ms ⁻²)	seconds is 49 ms ⁻¹ . It c) 78.4 ms ⁻¹	s velocity after ($t + 2$) d) 88.2 ms ⁻¹			
24.	-	uniformly accelerated is 23 m. Acceleration of b) 2 ms ⁻²	=	the 8 th second is 15 m d) 10 ms ⁻²			
25.		tically up from the gro e stone to reach the gr b) 10 s		um height of 50 m in 10 height is d) 25 s			

Key

- 1. B
- 2. D
- 3. A
- 4. B
- 5. C
- 6. A
- 7. D
- 8. D
- 9. B
- 10. B
- 11. A
- 12. D
- 13. A
- 14. B
- 15. A
- 16. B
- 17. D
- 18. C
- 19. C
- 20. B
- 21. D
- 22. C
- 23. B
- 24. B
- 25. B